
A Comparison of Peer-to-Peer Query Response Modes
Wolfgang Hoschek
CERN IT Division

European Organization for Nuclear Research
1211 Geneva 23, Switzerland

wolfgang.hoschek@cern.ch

ABSTRACT
In a large distributed system spanning many administra-
tive domains such as a Grid, it is desirable to maintain and
query dynamic and timely information about active partic-
ipants such as services, resources and user communities.
However, in such a database system, the set of information
tuples in the universe is partitioned over one or more dis-
tributed nodes, for reasons including autonomy, scalability,
availability, performance and security. This suggests the
use of Peer-to-Peer (P2P) query technology. A variety of
query response modes can be used to return matching query
results from P2P nodes to an originator. Although from the
functional perspective all response modes are equivalent,
no mode is optimal under all circumstances. Which query
response modes allow to express suitable trade-offs for a
wide range of P2P applications?

In this paper, we answer this question by systemat-
ically describing and characterizing four query response
modes for the Unified Peer-to-Peer Database Framework
(UPDF) proposed in our prior studies, namely Routed Re-
sponse, Direct Response, Routed Metadata Response, and
Direct Metadata Response. The response models are com-
pared with respect to distribution and location transparency,
efficiency of query support, economics, number of TCP
connections at originator and agent, latency, caching and
trust delegation to unknown parties. We discuss to what ex-
tent a given P2P network must mandate the use of any par-
ticular response mode throughout the system. As a result,
we propose that response modes can be mixed by switches
and shifts, in arbitrary permutations.
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1 Introduction

In a large distributed system spanning administrative do-
mains such as a Grid [1], it is desirable to maintain and
query dynamic and timely information about active par-
ticipants such as services, resources and user communi-
ties. Other examples are a (worldwide) service discovery
infrastructure for a multi-national organization, a Peer-to-
Peer (P2P) file sharing system, the Domain Name System
(DNS), the email infrastructure, a monitoring infrastructure
for a large-scale cluster of clusters, or an instant messaging

and news service. For example, the European DataGrid
(EDG) [2, 3] is a software infrastructure that ties together a
massive set of globally distributed organizations and com-
puting resources for data-intensive physics applications, in-
cluding thousands of network services, tens of thousands
of CPUs, WAN Gigabit networking as well as Petabytes of
disk and tape storage [4].

An enabling step towards increased Internet and Grid
software execution flexibility is the web services vision
[2, 5, 6] of distributed computing where programs are
no longer configured with static information. Rather, the
promise is that programs are made more flexible and pow-
erful by querying Internet databases (registries) at run-
time in order to discover information and network attached
third-party building blocks. Services can advertise them-
selves and related metadata via such databases, enabling
the assembly of distributed higher-level components.

In support of this vision we have introduced the Web
Service Discovery Architecture (WSDA) [7] and given mo-
tivation and justification [8] for the assertion that realis-
tic ubiquitous service and resource discovery requires a
rich general-purpose query language such as XQuery [9]
or SQL [10]. Based on WSDA, we introduced the hyper
registry [11], which is a centralized database (node) for dis-
covery of dynamic distributed content.

However, in an Internet discovery database system,
the set of information tuples in the universe is partitioned
over one or more distributed nodes (peers), for reasons
including autonomy, scalability, availability, performance
and security. It is not obvious how to enable powerful
discovery query support and collective collaborative func-
tionality that operate on the distributed system as a whole,
rather than on a given part of it. Further, it is not obvi-
ous how to allow for search results that are fresh, allowing
time-sensitive dynamic content.

It appears that a Peer-to-Peer (P2P) database network
may be well suited to support dynamic distributed database
search, for example for service discovery. The overall
P2P idea is as follows. Rather than have a centralized
database, a distributed framework is used where there exist
one or more autonomous database nodes, each maintain-
ing its own data. Queries are no longer posed to a central
database; instead, they are recursively propagated over the
network to some or all database nodes, and results are col-
lected and send back to the client.



Consequently, we devised the WSDA based Unified
Peer-to-Peer Database Framework (UPDF) [2] and its as-
sociated Peer Database Protocol (PDP) [12], which are
unified in the sense that they allow to express specific ap-
plications for a wide range of data types (typed or untyped
XML, any MIME type [13]), node topologies (e.g. ring,
tree, graph), query languages (e.g. XQuery, SQL), neigh-
bor selection policies (in the form of an XQuery), pipelin-
ing characteristics, timeout and other scope options.

A link topology describes the link structure among
nodes. For example, in a worldwide service discovery sys-
tem, a link topology can tie together a distributed set of
administrative domains, each hosting a registry node hold-
ing descriptions of services local to the domain. Several
link topology models covering the spectrum from central-
ized models to fine-grained fully distributed models can be
envisaged, among them single node, star, ring, tree, semi
hierarchical as well as graph models. Figure 1 depicts some
example topologies.

Figure 1. Example Link Topologies [14].

In the UPDF framework, an originator sends a query
to an agent node, which evaluates it, and forwards it to se-
lect neighbor nodes. For reliable loop detection in query
routes, a query has an identifier and a certain life time.
To each query, an originator attaches an abort timeout, a
loop timeout and a different transaction identifier, which is
a universally unique identifier (UUID). A node maintains
a state table of transaction identifiers and returns an error
when a query is received that has already been seen and
has not yet timed out.

A variety of query response modes can be used to re-
turn matching query results from P2P nodes to an origina-
tor. Although from the functional perspective all response
modes are equivalent, no mode is optimal under all circum-
stances. The key problem then is:

� Which query response modes allow to express suitable
trade-offs for a wide range of P2P applications?

In this paper, we answer the above question by sys-
tematically describing and characterizing four query re-
sponse modes for the UPDF framework. Under Routed Re-
sponse, results are fanned back into the originator along the
paths on which the query flowed outwards. Each (passive)

node returns to its (active) client not only its own local re-
sults but also all remote results it receives from neighbors.
Under Direct Response, results are not returned by routing
through intermediary nodes. Each (active) node that has lo-
cal results directly invites the (passive) agent to retrieve re-
sults, which the agent then combines and hands back to the
originator. Interaction consists of two phases under Routed
Metadata Response and Direct Metadata Response. In the
first phase, routed responses or direct responses are used.
However, nodes return only small metadata results. In the
second phase, the originator selects which data results are
relevant. The originator directly connects to the relevant
data sources and asks for data results.

This paper is organized as follows. Section 2 de-
scribes in detail the four response modes. Section 3 com-
pares the properties of the various response models with
respect to distribution and location transparency, efficiency
of query support, economics, number of TCP connections
at originator and agent, latency, caching and trust delega-
tion to unknown parties. Section 4 discusses to what extent
a given P2P network must mandate the use of any particu-
lar response mode throughout the system. We propose that
response modes can be mixed by switches and shifts, in ar-
bitrary permutations. Section 5 compares our work with
existing research results. Finally, Section 6 concludes this
paper.

2 Response Modes

We propose to distinguish four techniques to return match-
ing query results to an originator: Routed Response, Direct
Response, Routed Metadata Response, and Direct Meta-
data Response, as depicted in Figure 2. Let us examine
the main implications with a Gnutella use case. A typical
Gnutella query such as “Like a virgin” is matched by some
hundreds of files, most of them referring to replicas of the
very same music file. Not all matching files are identical
because there exist multiple related songs (e.g. remixes,
live recordings) and multiple versions of a song (e.g. with
different sampling rates). A music file has a size of at least
several megabytes. Many thousands of concurrent users
submit queries to the Gnutella network. A large fraction of
users lives on slow and unreliable dialup connections.

� Routed Response. (Figure 2-a). Results are propa-
gated back into the originator along the paths on which
the query flowed outwards. Each (passive) node re-
turns to its (active) client not only its own local results
but also all remote results it receives from neighbors.
The response protocol is tightly coupled to the query
protocol. Routing messages through a logical over-
lay network of P2P nodes is much less efficient than
routing through a physical network of IP routers [15].
Routing back even a single Gnutella file (let alone all
results) for each query through multiple nodes would
consume large amounts of overall system bandwidth,
most likely grinding Gnutella to a screeching halt.
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Figure 2. Peer-to-Peer Response Modes.

As the P2P network grows, it is fragmented because
nodes with low bandwidth connections cannot keep
up with traffic [16]. Consequently, routed responses
are not well suited for file sharing systems such as
Gnutella. In general, overall economics dictate that
routed responses are not well suited for systems that
return many and/or large results.

� Direct Response With and Without Invitation. To
better understand the underlying idea, we first intro-
duce the simpler variant, which is Direct Response
Without Invitation (Figure 2-b). Results are not re-
turned by routing back through intermediary nodes.
Each (active) node that has local results sends them
directly to the (passive) agent, which combines and
hands them back to the originator. Response traf-
fic does not travel through the P2P system. It is of-
floaded via individual point-to-point data transfers on
the edges of the network. The response push protocol
can be separated from the query protocol. For exam-
ple, HTTP, FTP or other protocols may be used for
response push. Let us examine the main implications
with a use case.

As already mentioned, a typical Gnutella query such
as “Like a virgin” is matched by some hundreds of
files, most of them referring to replicas of the very
same music file. For Gnutella users it would be
sufficient to receive just a small subset of matching
files. Sending back all such files would unneces-
sarily consume large amounts of direct bandwidth,
most likely restricting Gnutella to users with excessive
cheap bandwidth at their disposal. Note however, that
the overall Gnutella system would be only marginally
affected by a single user downloading, say, a million
music files, because the largest fraction of traffic does
not travel through the P2P system itself.

In general, individual economics dictate that direct re-
sponses without invitation are not well suited for sys-

tems that return many equal and/or large results, while
a small subset would be sufficient. A variant based on
invitation (Figure 2-c) softens the problem by invert-
ing control flow. Nodes with matching files do not
blindly push files to the agent. Instead they invite the
agent to initiate downloads. The agent can then act as
it sees fit. For example, it can filter and select a sub-
set of data sources and files and reject the rest of the
invitations. Due to its inferiority, the variant without
invitation is not considered any further. In the remain-
der of this thesis, we use the term Direct Response as
a synonym for Direct Response With Invitation.

� Routed Metadata Response and Direct Metadata
Response. Here interaction consists of two phases. In
the first phase, routed responses (Figure 2-d) or direct
responses (Figure 2-e,f)) are used. However, nodes do
not return data results in response to queries, but only
small metadata results. The metadata contains just
enough information to enable the originator to retrieve
the data results and possibly to apply filters before
retrieval. In the second phase, the originator selects,
based on the metadata, which data results are relevant.
The (active) originator directly connects to the rele-
vant (passive) data sources and asks for data results.
Again, the largest fraction of response traffic does not
travel through the P2P system. It is offloaded via indi-
vidual point-to-point data transfers on the edges of the
network. The retrieval protocol can be separated from
the query protocol. For example, HTTP, FTP or other
protocols may be used for retrieval.

The routed metadata response approach is used by file
sharing systems such as Gnutella. A Gnutella query
does not return files; it just returns an annotated set of
HTTP URLs. The originator connects to a subset of
these URLs to download files as it sees fit. Another
example is a service discovery system where the first
phase returns a set of service links instead of full ser-



vice descriptions. In the second phase, the originator
connects to a subset of these service links to down-
load service descriptions as it sees fit. Another ex-
ample is a referral system where the first phase uses
routed metadata response to return the service links of
the set of nodes having local matching results (“Go
ask these nodes for the answer”). In the second phase,
the originator or agent connects directly to a subset of
these nodes to query and retrieve result sets as it sees
fit. This variant avoids the “invitation storm” possible
under Direct Response. Referrals are also known as
redirections. A metadata response mode with a radius
scope of zero can be used to implement the referral
behavior of the Domain Name System (DNS). For de-
tails, see Section 5.

3 Response Mode Properties

Let us compare the properties of the various response mod-
els. The following abbreviations are used. RR . . . Routed
Response, RRM . . . Routed Response with metadata, RRX
. . . Routed Response with and without metadata, DR
. . . Direct Response, DRX . . . Direct Response with and
without metadata.

� Distribution and Location Transparency. In the re-
sponse models without metadata, the originator is un-
aware that (and how) tuples are partitioned among
nodes. In other words, these models are transparent
with respect to distribution and location. Metadata
responses require an originator to contact individual
data providers to download full results, and hence are
not transparent.

� (Efficient) Query Support. All models can answer
any query. Both simple and medium queries can be an-
swered efficiently by RRX and DRX, whereas a com-
plex query cannot be answered efficiently [2]. Trans-
mission of duplicate results unnecessarily wastes
bandwidth. RRX can eliminate duplicates already
along the query path, whereas DRX can only do so
in the final stage, at the agent. Similarly, maximum
result set size limiting is more efficient under RRX
because superfluous results can already be discarded
along the query path.

� Economics. RR results travel multiple hops rather
than just a single hop. This leads to poor overall eco-
nomics. The effect is more pronounced for large re-
sults, as is the case for music files. RR can also lead to
unfortunate individual economics. A user that induces
few or undemanding queries consumes few system re-
sources. However, if many heavy results for queries
from other parties are routed back via such a user’s
node, it can end up in a situation where it pays for
large amounts of bandwidth and gives it away for free
to anonymous third parties. For a given user, the costs

may drastically outweigh the gains. One could per-
haps devise appropriate authorization, quality of ser-
vice and flow control policies. The unsatisfying eco-
nomic situation is similar to the one of physical IP
routers on the Internet, which also forward traffic from
and to third parties. In any case, there remains the fact
that results travel multiple hops rather than just one.

In principle, RRM has the same poor economic prop-
erties as RR. However, if metadata is very small in
size (e.g. as in Gnutella), then the incurred process-
ing and transmission cost may be acceptable. For ex-
ample, Gnutella nodes just route back an annotated
set of HTTP URLs as metadata. Under DRX, result
traffic does not travel through the P2P system. Re-
trieving results is a deal between just two parties, the
provider and the consumer. Consequently, individual
economics are controllable and predictable. A user is
not charged much for other peoples workloads, unless
he explicitly volunteers.

� Number of TCP Connections at Originator. Under
RR and DR, just one (or no) TCP connection is re-
quired at the originator, whereas metadata modes re-
quire a connection per (selected) data provider. The
more data sources are selected, the more heavyweight
data retrieval becomes. Metadata modes can en-
counter serious latency limitations due to the very ex-
pensive nature of secure (and even insecure) TCP con-
nection setup. Hence, the approach does not scale
well. However, for many use cases this may not be
a problem because a client always selects only a small
number of data providers (e.g. 10).

� Number of TCP Connections at Agent. Usually a
node has few neighbors (five to hundreds). Under
RRX, one TCP connection per neighbor is required
at an agent. Under DRX, additionally a connection
per data provider is required. Again, the more data
providers exist, the more heavyweight data retrieval
becomes. DRX can encounter serious latency limita-
tions due to the very expensive nature of secure (and
even insecure) TCP connection setup. For example, a
query that finds the total number of services in the do-
main cern.ch should use RRX. Under DRX, it may
generate responses from every single node in that do-
main. Consequently, an agent can face an invitation
storm resembling a denial of service attack. On the
other hand, the potential to exploit parallelism is large.
All data providers can be handled independently in
parallel.

� Latency. If a query is of a type that cannot support
pipelining, the latency for the first result to arrive at
the originator is always poor. For a pipelined query,
the latency for the first result to arrive is small under
DRX, because a response travels a single hop only.
Under RRX, a response travels multiple hops, and la-
tency increases accordingly. However, the cost of TCP
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connection setup at originator and/or agent can invert
the situation. Under RR, the cost of TCP connection
setup to nodes is paid only once (at node publication
time), because connections can typically be kept alive
until node deregistration. This is not the case under
the other response modes.

� Caching. Caching is a technique that trades content
freshness for response time. RRX can potentially sup-
port caching of content from other nodes at interme-
diate nodes because response flow naturally concen-
trates and integrates results from many nodes. DRX
nodes return results directly and independently, and
hence cannot efficiently support caching.

� Trust Delegation to Unknown Parties. Query and
result traffic are subject to security attacks. It is not
sufficient to establish a secure mutually authenticated
channel between any two nodes because malicious
nodes can divert routes or modify queries and results.
Since a query is almost always routed through mul-
tiple hops, many of which are unknown to the agent,
we believe that indirect delegation of trust to unknown
parties cannot practically be avoided. Security sensi-
tive applications should choose DRX because at least
the retrieval of results occurs in a predictable manner
between just two parties that can engage in secure mu-
tual authentication and authorization. RRM merely
delegates trust on metadata results, but not on full re-
sults.

4 Response Mode Switches and Shifts

Although from the functional perspective all response
modes are equivalent, clearly no mode is optimal under
all circumstances. The question arises as to what extent a
given P2P network must mandate the use of any particular
response mode throughout the system. Observe that nodes
are autonomous and defined by their interface only. A node
does not “see” what kind of response mode (or technol-
ogy in general) its neighbors use in answering a query. As
long as query semantics are preserved, the node does not
care. Consequently, we propose that response modes can

be mixed by switches and shifts, in arbitrary permutations,
as depicted in Figure 3.

� Routed Response � Direct Response switch. (Fig-
ure 3-a). Starting from the agent, Routed Response is
used initially. The central node (“football”) receives
a query from the agent. For some reason, it decides
to answer the query using Direct Response. The re-
sponse flow that would have been taken under Routed
Response is shown crossed out.

� Direct Response � Routed Response switch. (Fig-
ure 3-b). Initially, Direct Response is used. How-
ever, the “football” decides to answer the query using
Routed Response.

� Direct Response � Direct Response shift. (Figure
3-c). Initially, Direct Response is used. The football
decides to continue using Direct Response but shift
the target of responses. To its own neighbors the foot-
ball declares itself as (a fake) agent. The responses
that would have flowed into the real agent now flow
back into the football, and then from the football to
the real agent. Note again that this does not break se-
mantics because the football behaves as if the results
would have been obtained from its own local database.
The real agent receives the same results, but solely
from the football.

� Routed Response � Routed Response shift. At
each hop, the response target is shifted to be the cur-
rent node. Interestingly, this kind of shift is at the very
heart of the definition of routed response. The classi-
fication introduced here shows that this is not the only
possible approach.

A node may choose its response mode based on a
local and autonomous assessment of the advantages and
disadvantages involved. However, because of its context
knowledge, often the client (e.g. originator) is in the best
position to judge what kind of response mode would be
most suitable. Therefore, it is useful to allow specifying as
part of the query a hint that indicates the preferred response
mode (routed or direct).



5 Related Work

DNS. Distributed databases with a hierarchical name
space such as the Domain Name System (DNS) [17] can
efficiently answer queries of the form “Find an object by
its full name”. These systems arrange the link topology, ac-
cording to the hierarchical name space, as a tree topology.
A query searching for the IP address of a domain name tra-
verses the tree on the shortest path from originator to the
node containing the domain name - first up, then down. At
each node, a name resolution policy selects the neighbor
“closer” to the name than the current node, according to
name space metadata. In DNS, queries are not forwarded
(routed) through the topology. Instead, a node returns a re-
ferral message that redirects an originator to the next closer
node. The originator explicitly queries the next node, is re-
ferred to yet another closer node, and so on. The DNS re-
ferral behavior can be implemented within our framework
by using a radius scope of zero. The same holds for the
LDAP referral behavior (see below).

X.500, LDAP and MDS. The hierarchical distributed
X.500 directory [18] works similarly to the DNS. It also
supports referrals, but in addition can forward queries
through the topology, using routed response (chaining in
X.500 terminology). LDAP [19] is a simplified subset of
X.500. Like DNS, it supports referrals but not query for-
warding. The Metacomputing Directory Service (MDS)
[20] inherits all properties of LDAP. MDS additionally im-
plements a simple form of query forwarding with routed
response that allows for multi-level hierarchies but not for
arbitrary topologies. Here neighbor selection forwards the
query to LDAP servers overlapping with the name space.

6 Conclusions

A variety of query response modes can be used to re-
turn matching query results from P2P nodes to an origina-
tor. Although from the functional perspective all response
modes are equivalent, no mode is optimal under all cir-
cumstances. Which query response modes allow to express
suitable trade-offs for a wide range of P2P applications?

In this paper, we answer this question by systemat-
ically describing and characterizing four query response
modes for the Unified Peer-to-Peer Database Framework
(UPDF) proposed in our prior studies, namely Routed Re-
sponse, Direct Response, Routed Metadata Response, and
Direct Metadata Response. The response models are com-
pared with respect to distribution and location transparency,
efficiency of query support, economics, number of TCP
connections at originator and agent, latency, caching and
trust delegation to unknown parties. We discuss to what ex-
tent a given P2P network must mandate the use of any par-
ticular response mode throughout the system. As a result,
we propose that response modes can be mixed by switches
and shifts, in arbitrary permutations.
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